Inverse Dirichlet-to-Neumann problem for nodal curves
نویسندگان
چکیده
منابع مشابه
Inverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملThe Inverse Problem for the Dirichlet-to-neumann Map on Lorentzian Manifolds
We consider the Dirichlet-to-Neumann map Λ on a cylinder-like Lorentzian manifold related to the wave equation related to the metric g, a magnetic field A and a potential q. We show that we can recover the jet of g,A, q on the boundary from Λ up to a gauge transformation in a stable way. We also show that Λ recovers the following three invariants in a stable way: the lens relation of g, and the...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Vectorial Inverse Nodal Problem
Consider the vectorial Sturm-Liouville problem: −y′′(x) + P (x)y(x) = λIdy(x) Ay(0) + Idy ′(0) = 0 By(1) + Idy ′(1) = 0 where P (x) = [pij(x)]i,j=1 is a continuous symmetric matrix-valued function defined on [0, 1], and A and B are d×d real symmetric matrices. An eigenfunction y(x) of the above problem is said to be of type (CZ) if any isolated zero of its component is a nodal point of y(x...
متن کاملSymmetry for a Dirichlet-neumann Problem Arising in Water Waves
Given a smooth u : R → R, say u = u(y), we consider u = u(x, y) to be a solution of ∆u = 0 for any (x, y) ∈ (0, 1)× R , u(0, y) = u(y) for any y ∈ R, ux(1, y) = 0 for any y ∈ R. We define the Dirichlet-Neumann operator (Lu)(y) = ux(0, y) and we prove a symmetry result for equations of the form (Lu)(y) = f(u(y)). In particular, bounded, monotone solutions in R are proven to depend only on one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Russian Mathematical Surveys
سال: 2012
ISSN: 0036-0279,1468-4829
DOI: 10.1070/rm2012v067n06abeh004818